Classe VBSOC - A.S. 2024-2025: Matematica: differenze tra le versioni
(→Metodi) |
|||
(Una versione intermedia di uno stesso utente non è mostrata) | |||
Riga 11: | Riga 11: | ||
= Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno = | = Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno = | ||
In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica | In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - Io ho cura" individuato "IO HO CURA DELLE ISTITUZIONI DEMOCRATICHE", la programmazione didattica della disciplina affronterà i seguenti argomenti: | ||
* | * Il Parlamento, i principi fondamentali della Costituzione Italiana | ||
= Obiettivi didattici in termini di: = | = Obiettivi didattici in termini di: = | ||
Riga 22: | Riga 21: | ||
== Conoscenze (sapere) == | == Conoscenze (sapere) == | ||
* | * Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi. | ||
* | * Campo di esistenza. Intersezioni con gli assi e segno di una funzione. | ||
* | * Limiti e continuità. | ||
* Asintoti. | |||
* Derivate. | |||
== Abilità (saper fare) | == Abilità (saper fare) == | ||
* | * Analizzare, descrivere e interpretare il comportamento di una funzione. | ||
* | * Determinare il campo di esistenza di una funzione, calcolare le intersezioni con gli assi e studiare il segno. | ||
* | * Calcolare limiti di funzioni. | ||
* Riconoscere graficamente i punti di discontinuità. | |||
* Calcolare gli asintoti di una funzione razionale. | |||
* Calcolare la derivata di una funzione. | |||
* Studiare il segno della derivata prima di una funzione razionale fratta. | |||
* Individuare gli intervalli di monotonia di una funzione razionale fratta. | |||
* Trovare punti di massimo e di minimo di una funzione razionale fratta. | |||
* Eseguire lo studio di una funzione razionale intera e fratta e tracciarne il grafico | |||
== Competenze (saper essere/essere in grado di) == | == Competenze (saper essere/essere in grado di) == | ||
* | * Comprendere e utilizzare i principali concetti relativi all'economia, all'organizzazione, allo svolgimento dei processi produttivi e dei servizi. | ||
* | * Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento | ||
* | * Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi | ||
== Obiettivi minimi | == Obiettivi minimi == | ||
(definiti in dipartimento) | (definiti in dipartimento) | ||
* | * Individuare il C.E. di una funzione, le sue intersezioni con gli assi cartesiani, il segno e gli eventuali asintoti | ||
* | * Calcolo dei limiti di funzioni (casi semplici) | ||
* | * Riconoscere le forme indeterminate dei limiti | ||
* Derivare una funzione | |||
* Tracciare ed interpretare il grafico di una funzione razionale fratta | |||
= Contenuti | = Contenuti = | ||
* | * Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi. | ||
* | * Campo di esistenza. Intersezioni con gli assi e segno di una funzione. | ||
* | * Limiti e continuità. Punti di discontinuità. Forme indeterminate. Algebra dei limiti. Limiti di funzioni elementari. | ||
* Asintoti orizzontali e verticali. | |||
* Derivate. Definizione. Regole di derivazione. Punti di massimo e di minimo. | |||
== Contenuti minimi | == Contenuti minimi == | ||
(definiti in dipartimento) | (definiti in dipartimento) | ||
* | * Classificazione delle funzioni e calcolo del C.E. | ||
* | * Intersezione con gli assi e segno della funzione. | ||
* | * Calcolo dei limiti. Forme indeterminate. | ||
* Asintoti orizzontali e verticali | |||
* Derivata definizione e calcolo. Punti di massimo e di minimo. | |||
= Metodi = | = Metodi = | ||
* | * Le lezioni saranno prevalentemente frontali con spiegazioni chiare, eventualmente ripetute, accompagnate da numerosi esempi di difficoltà progressivamente crescente. Si farà largo uso del libro di testo per le esercitazioni e per integrare gli appunti presi durante le lezioni. Si cercherà inoltre di stimolare le capacità dei singoli alunni favorendo interventi ed osservazioni e, quando possibile, si cercherà di operare collegamenti sia tra gli argomenti trattati, sia interdisciplinari. Ampio spazio verrà dato alla correzione dei compiti e al controllo dello studio domestico per verificare il livello di apprendimento ed anche come momento di ripasso e recupero. Gli studenti saranno costantemente coinvolti e si cercherà portarli ad un uso appropriato degli strumenti della materia e ad un’esposizione precisa. | ||
= Verifiche = | = Verifiche = | ||
Le valutazioni saranno almeno 4 per periodo. Le verifiche saranno sia scritte sia orali. La griglia di valutazione è quella d'istituto. | |||
= Libri di testo = | = Libri di testo = | ||
"Sasso, Fragni: "Colori della matematica, edizione Bianca, per il secondo biennio, Volume A" , Petrini. | |||
Versione attuale delle 15:39, 8 ott 2024
Docente
Lovato Carlo
Inserimento della programmazione di materia nello Sfondo Unificatore (Macro-UDA) dell'anno
In relazione allo sfondo unificatore scelto per l'Anno scolastico in corso, "IL CERCHIO DELLA VITA", la programmazione didattica della disciplina affronterà i seguenti argomenti:
- Il fenomeno dell’invecchiamento attivo e condizioni di vita degli anziani in Italia. Analisi di documenti ISTAT basati sull’Active ageing index.
Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno
In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - Io ho cura" individuato "IO HO CURA DELLE ISTITUZIONI DEMOCRATICHE", la programmazione didattica della disciplina affronterà i seguenti argomenti:
- Il Parlamento, i principi fondamentali della Costituzione Italiana
Obiettivi didattici in termini di:
In relazione al piano di studio devono essere conseguiti i seguenti obiettivi in termini di:
Conoscenze (sapere)
- Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
- Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
- Limiti e continuità.
- Asintoti.
- Derivate.
Abilità (saper fare)
- Analizzare, descrivere e interpretare il comportamento di una funzione.
- Determinare il campo di esistenza di una funzione, calcolare le intersezioni con gli assi e studiare il segno.
- Calcolare limiti di funzioni.
- Riconoscere graficamente i punti di discontinuità.
- Calcolare gli asintoti di una funzione razionale.
- Calcolare la derivata di una funzione.
- Studiare il segno della derivata prima di una funzione razionale fratta.
- Individuare gli intervalli di monotonia di una funzione razionale fratta.
- Trovare punti di massimo e di minimo di una funzione razionale fratta.
- Eseguire lo studio di una funzione razionale intera e fratta e tracciarne il grafico
Competenze (saper essere/essere in grado di)
- Comprendere e utilizzare i principali concetti relativi all'economia, all'organizzazione, allo svolgimento dei processi produttivi e dei servizi.
- Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento
- Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi
Obiettivi minimi
(definiti in dipartimento)
- Individuare il C.E. di una funzione, le sue intersezioni con gli assi cartesiani, il segno e gli eventuali asintoti
- Calcolo dei limiti di funzioni (casi semplici)
- Riconoscere le forme indeterminate dei limiti
- Derivare una funzione
- Tracciare ed interpretare il grafico di una funzione razionale fratta
Contenuti
- Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
- Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
- Limiti e continuità. Punti di discontinuità. Forme indeterminate. Algebra dei limiti. Limiti di funzioni elementari.
- Asintoti orizzontali e verticali.
- Derivate. Definizione. Regole di derivazione. Punti di massimo e di minimo.
Contenuti minimi
(definiti in dipartimento)
- Classificazione delle funzioni e calcolo del C.E.
- Intersezione con gli assi e segno della funzione.
- Calcolo dei limiti. Forme indeterminate.
- Asintoti orizzontali e verticali
- Derivata definizione e calcolo. Punti di massimo e di minimo.
Metodi
- Le lezioni saranno prevalentemente frontali con spiegazioni chiare, eventualmente ripetute, accompagnate da numerosi esempi di difficoltà progressivamente crescente. Si farà largo uso del libro di testo per le esercitazioni e per integrare gli appunti presi durante le lezioni. Si cercherà inoltre di stimolare le capacità dei singoli alunni favorendo interventi ed osservazioni e, quando possibile, si cercherà di operare collegamenti sia tra gli argomenti trattati, sia interdisciplinari. Ampio spazio verrà dato alla correzione dei compiti e al controllo dello studio domestico per verificare il livello di apprendimento ed anche come momento di ripasso e recupero. Gli studenti saranno costantemente coinvolti e si cercherà portarli ad un uso appropriato degli strumenti della materia e ad un’esposizione precisa.
Verifiche
Le valutazioni saranno almeno 4 per periodo. Le verifiche saranno sia scritte sia orali. La griglia di valutazione è quella d'istituto.
Libri di testo
"Sasso, Fragni: "Colori della matematica, edizione Bianca, per il secondo biennio, Volume A" , Petrini.