Classe IIBA - A.S. 2024-2025: Matematica

Da MediciWiki.
Vai alla navigazione Vai alla ricerca

Docente

Emma Bissoli

Inserimento della programmazione di materia nello Sfondo Unificatore (Macro-UDA) dell'anno

In relazione allo sfondo unificatore scelto per l'Anno scolastico in corso, "ESSERE PROFESSIONISTI NEL MONDO HORECA ", la programmazione didattica della disciplina affronterà i seguenti argomenti:

  • Partendo da un compito di realtà (l’orario di lavoro di un cameriere) lo studente affronterà  le funzioni e in particolare la retta nel piano cartesiano.

Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno

In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - Io ho cura" individuato "IO HO CURA DELLE PERIFERIE", la programmazione didattica della disciplina affronterà i seguenti argomenti:

  • La crisi abitativa che ha investito la popolazione nei vari decenni dovuta al processo di  trasformazione sociale ed economica.
  • Analisi e discussione dei dati.
  • Legambiente, plasticfree.

Obiettivi didattici in termini di:

In relazione al piano di studio devono essere conseguiti i seguenti obiettivi in termini di:

Conoscenze (sapere)

  • Ripasso sugli argomenti di algebra del primo anno.
  • Scomposizione dei polinomi.
  • Frazioni algebriche.
  • Cenni sui radicali quadratici.
  • Equazioni di secondo grado.
  • Il metodo delle coordinate: il piano cartesiano.
  • Le funzioni e la loro rappresentazione (numerica, funzionale, grafica).
  • Sistemi di primo grado.
  • Interpretazione geometrica dei sistemi di equazioni lineari in due incognite.
  • Significato della probabilità e sue valutazioni.
  • Probabilità e frequenza.

Abilità (saper fare)

  • Utilizzare in modo consapevole le procedure di scomposizione dei polinomi.
  • Risolvere equazioni di secondo grado.
  • Rappresentare in un piano cartesiano funzioni lineari.
  • Porre, analizzare e risolvere problemi con l’uso di funzioni, di equazioni e sistemi di equazioni anche per via grafica.
  • Riconoscere e descrivere semplici relazioni tra grandezze in situazioni reali utilizzando un modello lineare.
  • Risolvere equazioni e sistemi anche graficamente.
  • Calcolare la probabilità di eventi elementari.

Competenze (saper essere/essere in grado di)

  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi.

Obiettivi minimi

(definiti in dipartimento) 

  • Risolvere semplici espressioni con  i numeri relativi e razionali.
  • Scomposizione dei polinomi (raccoglimento a fattor comune e differenza di due quadrati, quadrato di binomio).
  • Frazioni algebriche: semplificazioni.
  • Equazioni di secondo grado in forma incompleta e completa.
  • Piano cartesiano e coordinate.
  • La retta in forma implicita ed esplicita; coefficiente angolare e intercetta all’origine. Retta per due punti, retta per un punto e coefficiente angolare noto. Condizione di parallelismo e di perpendicolarità. Dall’equazione al grafico e viceversa.
  • Sistemi di primo grado di due equazioni in due incognite. Metodo di sostituzione e di riduzione. Interpretazione geometrica dei sistemi di equazioni lineari in due incognite.
  • Probabilità e frequenza di casi elementari.

Contenuti

  • Ripasso sugli argomenti di algebra del primo anno (settembre).
  • L’insieme Q: proprietà; operazioni ed espressioni; potenze ad esponente intero. (Settembre-Ottobre)
  • Scomposizione dei polinomi: raccoglimento a fattor comune, raccoglimento parziale, differenza di due quadrati, quadrato di binomio, trinomio notevole (ottobre-novembre).
  • Frazioni algebriche: semplificazione e operazioni (novembre).
  • Radicali quadratici e cubici (cenni).Equazioni di secondo grado in forma incompleta e completa (maggio).
  • Piano cartesiano e coordinate (dicembre).
  • La retta in forma implicita ed esplicita; coefficiente angolare e intercetta all’origine. Retta per due punti, retta per un punto e coefficiente angolare noto. Condizione di parallelismo e di perpendicolarità. Dall’equazione al grafico e viceversa (febbraio- marzo).
  • Sistemi di primo grado di due equazioni in due incognite. Metodo di sostituzione e di riduzione. Interpretazione geometrica dei sistemi di equazioni lineari in due incognite (aprile).
  • Significato della probabilità e sue valutazioni. Eventi disgiunti, probabilità composta, eventi indipendenti. Probabilità e frequenza (nel pentamestre).

Contenuti minimi

(definiti in dipartimento) 

  • L’insieme Q: proprietà; operazioni  ed espressioni semplici; potenze ad  esponente intero
  • Scomposizione dei polinomi (raccoglimento a fattor comune e differenza di due quadrati, quadrato di binomio).
  • Frazioni algebriche: semplificazioni.
  • Equazioni di secondo grado in forma incompleta e completa.
  • Piano cartesiano e coordinate.
  • La retta in forma implicita ed esplicita; coefficiente angolare e intercetta all’origine. Retta per due punti, retta per un punto e coefficiente angolare noto. Condizione di parallelismo e di perpendicolarità. Dall’equazione al grafico e viceversa.
  • Sistemi di primo grado di due equazioni in due incognite. Metodo di sostituzione e di riduzione.
  • Interpretazione geometrica dei sistemi di equazioni lineari in due incognite.
  • Probabilità e frequenza di casi elementari.

Metodi

  •  
  •  
  •  

Verifiche

  •  
  •  
  •  

Libri di testo

  •  
  •