Classe VCA - A.S. 2020-2021: Matematica

Da MediciWiki.
Versione del 31 ott 2020 alle 19:08 di Francesca.bissolo (discussione | contributi) (→‎Conoscenze (sapere))
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

Docente

Bissolo Francesca

Inserimento della programmazione di materia nello Sfondo Unificatore dell'anno

In relazione allo sfondo unificatore scelto per l'Anno scolastico in corso, "FOOD, BEVERAGE & CUSTOMER MANAGEMENT: LA GESTIONE DI UNA STRUTTURA NELL’OTTICA DELLA VALORIZZAZIONE DEL TERRITORIO E DELL’INNOVAZIONE", la programmazione didattica della disciplina affronterà i seguenti nuclei tematici:


  • Gestire una struttura con lo scopo di valorizzare il territorio rappresenta lo sfondo unificatore comune per le classi quinte dell’indirizzo di “sala e vendita”.

L’espressione

y= -0.2x2+80x descrive il ricavo (y) di un ristorante del Lago di Garda, espresso in euro, in funzione del numero di piatti serviti (x).

Per quale numero di piatti e massimo il ricavo totale totale e a quanto ammonta?


Il compito di realtà funge da apripista al docente di matematica per descrivere i temi principali dell’ analisi che caratterizzano la progettazione curricolare prevista per l'ultimo anno di studi:

  • le funzioni;
  • grafico di funzione;
  • dominio;
  • codominio;
  • classificazione;
  • intersezione e segno di una funzione;
  • derivata di una funzione;
  • punti estremanti relativi.


Una volta presentato il problema al gruppo classe, il docente individua i contenuti necessari per determinare la sua soluzione seguendo un percorso di tipo induttivo (dal particolare al generale). Così facendo gli studenti hanno la possibilità di constatare l’utilità dei temi oggetto di studi che appaiono, per la maggior parte, puramente astratti.

Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno

In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - Io ho cura" individuato "IO HO CURA DELLE ISTITUZIONI DEMOCRATICHE", la programmazione didattica della disciplina affronterà i seguenti nuclei tematici:

l’Organizzazione Mondiale della Sanità - OMS e il modello matematico per la diffusione del virus. La diffusione del contagio, la curva epidemiologica.

Obiettivi didattici in termini di:

In relazione al piano di studio devono essere conseguiti i seguenti obiettivi in termini di:

Conoscenze (sapere)

  • Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
  • Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
  • Limiti e continuità.
  • Asintoti.
  • Derivate.
  • Gli strumenti dell’analisi matematica per lo studio delle funzioni.
  • Validità e attendibilità di una fonte sul web.
  • Servizi internet: navigazione, ricerca informazioni sul motore di ricerca.

Abilità (saper fare)

  • Determinare il campo di esistenza di una funzione, calcolare le intersezioni con gli assi e studiare il segno.
  • Calcolare limiti di funzioni.
  • Riconoscere graficamente i punti di discontinuità.
  • Calcolare gli asintoti di una funzione razionale.
  • Calcolare la derivata di una funzione.
  • Applicare il teorema di de L’Hopital.
  • Eseguire lo studio di una funzione razionale intera e fratta e tracciarne il grafico.

Competenze (saper essere/essere in grado di)

  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi.
  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi.
  • Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento.

Obiettivi minimi

(definiti in dipartimento) 

  • Individuare il C.E. di una funzione, le sue intersezioni con gli assi cartesiani, il segno e gli eventuali asintoti
  • Calcolo dei limiti di funzioni (casi semplici)
  • Riconoscere le forme indeterminate dei limiti
  • Derivare una funzione
  • Tracciare ed interpretare il grafico di una funzione razionale fratta
  • Gli strumenti base per lo studio di funzione
  • Validità e attendibilità di una fonte sul web

Contenuti

  • Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
  • Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
  • Limiti e continuità. Forme indeterminate. Algebra dei limiti. Limiti di funzioni elementari.
  • Asintoti orizzontali e verticali.
  • Derivate. Definizione. Regole di derivazione. Punti di massimo e di minimo.

Contenuti minimi

(definiti in dipartimento) 

  • Classificazione delle funzioni e calcolo del C.E.
  • Intersezione con gli assi e segno della funzione.
  • Calcolo dei limiti. Forme indeterminate.
  • Asintoti orizzontali e verticali
  • Derivata definizione e calcolo. Punti di massimo e di minimo.

Metodi

Per sviluppare ogni unità di apprendimento la docente si avvarrà principalmente di una metodologia didattica di tipo induttivo che permette di generalizzare i contenuti trattati partendo da casi specifici, molto sfruttata nelle discipline scientifiche. Altre metodologie che verranno impiegate dalla docente nella didattica saranno:

  • ·la lezione frontale, per descrivere i contenuti teorici della disciplina e dove possibile introduzione storica al concetto
  • ·il peer to peer, che può essere gestito anche in DID
  • flipped classroom, metodologia indicata per la didattica integrata

La docente assegnerà i compiti per casa elencandoli nel registro elettronico e verranno controllati e corretti ogni volta sia necessario per riprendere concetti e passaggi fondamentali. Durante ogni lezione ci sarà il momento per rispondere alle domande degli studenti e per integrare la spiegazione.

Verifiche

Durante l'anno scolastico si faranno due tipi di valutazioni, una di carattere formativo e una di carattere sommativo. La valutazione sarà quindi comprensiva dell'attenzione alle lezioni, dell'impegno nello svolgimento dei compiti assegnati per casa, della costanza nello studio disciplinare, la partecipazione durante i vari interventi didattici. le tipologie spazieranno dalla quelle a risposta aperta, alle online, alla costruzione di video, ppt o lezioni vere e proprie da riportare alla classe, permettendo così ad ogni alunno di capire e costruire la propria modalità di comprensione della materia e di esprimersi utilizzando tutte le caratteristiche personali.

Libri di testo

Nuova matematica a colori - Edizione leggera - Vol. 4 di Leonardo Sasso - Edizioni Petrini