Classe VAA - A.S. 2022-2023: Matematica

Da MediciWiki.
Versione del 12 ott 2022 alle 16:51 di Livia.dedonno (discussione | contributi) (→‎Libri di testo)
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

Docente

LIVIA DE DONNO

Inserimento della programmazione di materia nello Sfondo Unificatore dell'anno

In relazione allo sfondo unificatore scelto per l'Anno scolastico in corso, " NNOVAZIONE NELLA TRADIZIONE: LE NUOVE FRONTIERE DELLA GASTRONOMIA" la

programmazione didattica della disciplina affronterà i seguenti nuclei tematici:

  • Analisi dei dati del rapporto annuale della ristorazione di Fipe Confcommercio.

Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno

In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - Io ho cura" individuato "HO CURA DELLE ISTITUZIONI DEMOCRATICHE", la programmazione didattica della disciplina affronterà i seguenti nuclei tematici:

  • La FAO - Food and Agricolture Organization of the United Nations: come orientarsi tra la moltitudine di dati riguardanti i progetti e gli investimenti della FAO.

Obiettivi didattici in termini di:

In relazione al piano di studio devono essere conseguiti i seguenti obiettivi in termini di: ==Conoscenze (sapere)==*Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.

  • Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
  • Limiti e continuità.
  • Asintoti.
  • Derivate.

Abilità (saper fare)

  • Analizzare, descrivere e interpretare il comportamento di una funzione.
  • Determinare il campo di esistenza di una funzione, calcolare le intersezioni con gli assi e studiare il segno.
  • Calcolare limiti di funzioni.
  • Riconoscere graficamente i punti di discontinuità.
  • Calcolare gli asintoti di una funzione razionale.
  • Calcolare la derivata di una funzione.
  • Applicare il teorema di de L’Hopital.
  • Eseguire lo studio di una funzione razionale intera e fratta e tracciarne il grafico.

Competenze (saper essere/essere in grado di)

  • Comprendere e utilizzare i principali concetti relativi all'economia, all'organizzazione, allo svolgimento dei processi produttivi e dei servizi
  • Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento
  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi

Obiettivi minimi

  • Individuare il C.E. di una funzione, le sue intersezioni con gli assi cartesiani, il segno e gli eventuali asintoti
  • Calcolo dei limiti di funzioni (casi semplici)
  • Riconoscere le forme indeterminate dei limiti
  • Derivare una funzione
  • Tracciare ed interpretare il grafico di una funzione razionale fratta

Contenuti

  • Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
  • Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
  • Limiti e continuità. Punti di discontinuità. Forme indeterminate. Algebra dei limiti. Limiti di funzioni elementari.
  • Asintoti orizzontali e verticali.
  • Derivate. Definizione. Regole di derivazione. Punti di massimo e di minimo.

Contenuti minimi

  • Classificazione delle funzioni e calcolo del C.E.
  • Intersezione con gli assi e segno della funzione.
  • Calcolo dei limiti. Forme indeterminate.
  • Asintoti orizzontali e verticali
  • Derivata definizione e calcolo. Punti di massimo e di minimo.

Metodi

Lezioni frontali - lezioni partecipate- problem solving. Verranno risolti in classe la quasi totalità degli esercizi assegnati per casa. Si farà largo uso del libro di testo per le esercitazioni e per integrare gli appunti presi durante le lezioni. Schemi riassuntivi e approfondimenti condivisi in Classroom.

Verifiche

Le valutazioni saranno almeno 3 nel trimestre e 4 nel pentamestre. Le verifiche potranno essere scritte o orali.

Libri di testo

"Sasso, Fragni: "Colori della matematica, edizione Bianca, per il secondo biennio, Volume A" , Petrini.