Classe IIIASOC - A.S. 2025-2026: Matematica

Da MediciWiki.
Versione del 11 ott 2025 alle 20:29 di Veronica.condina (discussione | contributi)
(diff) ← Versione meno recente | Versione attuale (diff) | Versione più recente → (diff)
Vai alla navigazione Vai alla ricerca

Docente

Veronica Condina

Inserimento della programmazione di materia nello Sfondo Unificatore (Macro-UDA) dell'anno

In relazione allo sfondo unificatore scelto per l'Anno scolastico in corso, "L’ADOLESCENZA DA SCOPRIRE", la programmazione didattica della disciplina affronterà i seguenti argomenti:

  • La ludopatia tra i giovani. Misconcetti matematici sulla probabilità, indice di iniquità nei giochi  d’azzardo, legge dei grandi numeri.

Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno

Il percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - Io ho cura" è "Io ho cura dei vulnerabili": la programmazione didattica della disciplina affronterà il tema approfondendo la conoscenza di alcuni strumenti di statistica descrittiva, con riferimento a quanto stabilito in dipartimento (competenze, abilità, conoscenze, contenuti).

Obiettivi didattici in termini di:

In relazione al piano di studio devono essere conseguiti i seguenti obiettivi in termini di:

Conoscenze (sapere)

  • Retta.
  • Parabola.
  • Circonferenza.
  • Sistemi di 2° grado.
  • Disequazioni di 1° grado, disequazioni fratte, sistemi di disequazioni.
  • Disequazioni e sistemi di disequazioni di secondo grado.
  • Piano cartesiano; lettura dei grafici e rappresentazione dei dati con software specifici.
  • Tecniche e modalità di raccolta e archiviazione dati.
  • Elementi della statistica descrittiva.
  • Validità e attendibilità di una fonte sul web.
  • Servizi internet: navigazione, ricerca informazioni sul motore di ricerca.

Abilità (saper fare)

  • Utilizzare diverse forme di rappresentazione (verbale, simbolica e grafica) per descrivere oggetti matematici, fenomeni naturali, e sociali.
  • Rappresentare sul piano cartesiano una retta, individuarne gli elementi fondamentali.
  • Rappresentare sul piano cartesiano una parabola, individuarne gli elementi fondamentali.
  • Rappresentare sul piano cartesiano una circonferenza, individuarne gli elementi fondamentali.
  • Risolvere sistemi di 2° grado.
  • Risolvere disequazioni di 1° e 2°grado, semplici fratte e sistemi.
  • Descrivere, classificare e raccogliere informazioni e dati.
  • Decodificare e utilizzare in modo consapevole e critico le forme di informazione.

Competenze (saper essere/essere in grado di)

  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi.
  • Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento

Obiettivi minimi

(definiti in dipartimento) 

  • Riconoscere e disegnare retta, parabola e circonferenza.
  • Risolvere semplici problemi su retta, parabola e circonferenza.
  • Svolgere sistemi di secondo grado.
  • Trovare le soluzioni di disequazioni intere di primo e secondo grado,
  • Trovare le soluzioni disequazioni fratte e sistemi di disequazioni.
  • Rappresentare i dati sul piano cartesiano
  • Interpretare i grafici  e ricavare i dati significativi
  • Conoscere gli elementi della statistica descrittiva.
  • Analizzare i dati di una distribuzione.

Contenuti

  • Piano cartesiano: distanza tra due punti; punto medio. Problemi di geometria nel piano cartesiano.
  • Retta: equazione cartesiana ed elementi caratterizzanti; grafico. Dal grafico alla sua equazione. Equazione della retta per due punti, equazione della retta per un punto e con coefficiente angolare noto; rette parallele e perpendicolari; posizione reciproca tra due rette.
  • Parabola (con asse di simmetria verticale): equazione cartesiana ed elementi caratterizzanti; grafico. Problemi con la parabola.
  • Circonferenza: equazione cartesiana ed elementi caratterizzanti; grafico. Problemi con la circonferenza.
  • Sistemi di 2° grado.
  • Disequazioni di 1° grado, disequazioni fratte, sistemi di disequazioni.
  • Disequazioni e sistemi di disequazioni di secondo grado.

Contenuti minimi

(definiti in dipartimento) 

  • Piano cartesiano: distanza tra due punti; punto medio. Problemi di geometria nel piano cartesiano (perimetro e area di figure semplici).
  • Retta: equazione cartesiana ed elementi caratterizzanti; grafico. Dal grafico alla sua equazione. Equazione della retta per due punti, equazione della retta per un punto e con coefficiente angolare noto; rette parallele e perpendicolari; posizione reciproca tra due rette.
  • Parabola (con asse di simmetria verticale): equazione cartesiana ed elementi caratterizzanti; grafico. Problemi semplici con la parabola.
  • Circonferenza: equazione cartesiana ed elementi caratterizzanti; grafico. Problemi semplici con la circonferenza.
  • Sistemi di 2° grado.
  • Disequazioni di 1° grado, disequazioni fratte, sistemi di disequazioni.
  • Disequazioni e sistemi di disequazioni di secondo grado.

Metodi

  • Le lezioni si svolgeranno con metodo frontale e con partecipazione attiva degli studenti. Le lezioni saranno supportate da numerosi esercizi ed esempi esplicativi di difficoltà crescente.
  • Verrà chiesto di prendere appunti e di completare lo studio con esercizi individuali, poi condivisi. Si effettueranno momenti di recupero e di ripasso degli argomenti precedenti.
  • I compiti a casa e lo studio domestico sono demandati alla maturità degli alunni, ma vi saranno frequenti momenti di confronto in classe sugli stessi, per favorire il coinvolgimento degli studenti e stimolare l'uso appropriato degli strumenti della materia e abituarli ad un’esposizione precisa e rigorosa. Ampio spazio verrà dato alla correzione dei compiti e al controllo dello studio domestico per verificare il livello di apprendimento.

Verifiche

  • Le valutazioni scritte e orali contribuiscono alla valutazione complessiva. Le valutazioni finali si basano, oltre che sui risultati conseguiti nelle varie prove e verifiche, anche sulle sull’andamento (e la tendenza) del rendimento durante il corso dell’anno scolastico, sull’impegno e sull’attenzione e la partecipazione alle lezioni.
  • Le verifiche orali avranno lo scopo di valutare il corretto uso del linguaggio specifico della materia, l'utilizzo consapevole delle tecniche di calcolo studiate ed il livello di comprensione e conoscenza raggiunto.
  • Le verifiche scritte conterranno (possibili) quesiti teorici, esercizi da risolvere e problemi con diversi gradi di difficoltà; le verifiche orali prevedranno domande teoriche, risoluzione di esercizi e problemi.
  • La griglia di valutazione è quella fissata in dipartimento.

Libri di testo

  • L. Sasso, I. Fragni- Tutti i colori della Matematica - Edizione BIANCA Vol. A. Edizioni Petrini.