Classe VDA - A.S. 2021-2022: Matematica

Da MediciWiki.
Vai alla navigazione Vai alla ricerca

Docente

Silvia Bonometti

Inserimento della programmazione di materia nello Sfondo Unificatore dell'anno

In relazione allo sfondo unificatore scelto per l'Anno scolastico in corso, "DAL TERRITORIO AI TERRITORI: IL TURISMO LENTO, RESPONSABILE E SOSTENIBILE", la programmazione didattica della disciplina affronterà questo tema prendendolo come base per la programmazione curricolare e sottolineandolo grazie ad un compito di realtà.

Inserimento della programmazione di materia nel percorso di "Educazione civica - Io ho cura" dell'anno

In relazione al percorso didattico individuato nel curricolo d'Istituto di "Educazione civica - IO HO CURA DELLE ISTITUZIONI DEMOCRATICHE", la programmazione didattica della disciplina svilupperà i seguenti obiettivi in termini di:

Competenze

  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi.
  • Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento

Abilità

  • Decodificare e utilizzare in modo consapevole e critico le forme di informazione.
  • Descrivere un fenomeno dal suo grafico utilizzando gli strumenti dell’analisi matematica.
  • Utilizzare diverse forme di rappresentazione (verbale, simbolica e grafica) per descrivere oggetti matematici, fenomeni naturali, e sociali.

Conoscenze

  • Validità e attendibilità di una fonte sul web.
  • Gli strumenti dell’analisi matematica per lo studio delle funzioni.

Contenuti

  • La FAO - Food and Agricolture Organization of the United Nations: come orientarsi tra la moltitudine di dati riguardanti i progetti e gli investimenti della FAO.

TEMPI 6 ORE

 

Obiettivi didattici in termini di:

In relazione al piano di studio devono essere conseguiti i seguenti obiettivi in termini di:

Conoscenze (sapere)

  • Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
  • Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
  • Limiti e continuità.
  • Asintoti.
  • Derivate.
  • Gli strumenti dell’analisi matematica per lo studio delle funzioni.
  • Validità e attendibilità di una fonte sul web.
  • Servizi internet: navigazione, ricerca informazioni sul motore di ricerca.

Abilità (saper fare)

  • Determinare il campo di esistenza di una funzione, calcolare le intersezioni con gli assi e studiare il segno.
  • Calcolare limiti di funzioni.
  • Riconoscere graficamente i punti di discontinuità.
  • Calcolare gli asintoti di una funzione razionale.
  • Calcolare la derivata di una funzione.
  • Applicare il teorema di de L’Hopital.
  • Eseguire lo studio di una funzione razionale intera e fratta e tracciarne il grafico.

Competenze (saper essere/essere in grado di)

  • Utilizzare i concetti e i fondamentali strumenti degli assi culturali per comprendere la realtà ed operare in campi applicativi.
  • Utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento.

Obiettivi minimi

(definiti in dipartimento) 

  • Individuare il C.E. di una funzione, le sue intersezioni con gli assi cartesiani, il segno e gli eventuali asintoti.
  • Calcolo dei limiti di funzioni (casi semplici).
  • Riconoscere le forme indeterminate dei limiti.
  • Derivare una funzione.
  • Tracciare ed interpretare il grafico di una funzione razionale fratta.
  • Gli strumenti base per lo studio di funzione.
  • Validità e attendibilità di una fonte sul web.

Contenuti

  • Funzioni reali, razionali, irrazionali, esponenziali e logaritmiche: caratteristiche e parametri significativi.
  • Campo di esistenza. Intersezioni con gli assi e segno di una funzione.
  • Limiti e continuità. Forme indeterminate. Algebra dei limiti. Limiti di funzioni elementari.
  • Asintoti orizzontali e verticali.
  • Derivate. Definizione. Regole di derivazione. Punti di massimo e di minimo.

Contenuti minimi

(definiti in dipartimento) 

  • Classificazione delle funzioni e calcolo del C.E.
  • Intersezione con gli assi e segno della funzione.
  • Calcolo dei limiti. Forme indeterminate.
  • Asintoti orizzontali e verticali.
  • Derivata definizione e calcolo. Punti di massimo e di minimo.

Metodi

Per sviluppare ogni unità di apprendimento la docente si avvarrà principalmente di una metodologia didattica di tipo induttivo che permette di generalizzare i contenuti trattati partendo da casi specifici, molto sfruttata nelle discipline scientifiche. Altre metodologie che verranno impiegate dalla docente nella didattica saranno:

  • ·la lezione frontale, per descrivere i contenuti teorici della disciplina e dove possibile introduzione storica al concetto
  • ·il peer to peer, che può essere gestito anche in DID
  • flipped classroom, metodologia indicata per la didattica integrata

La docente assegnerà i compiti per casa elencandoli nel registro elettronico e verranno controllati e corretti ogni volta sia necessario per riprendere concetti e passaggi fondamentali. Durante ogni lezione ci sarà il momento per rispondere alle domande degli studenti e per integrare la spiegazione.

Verifiche

Durante l'anno scolastico si faranno due tipi di valutazioni, una di carattere formativo e una di carattere sommativo. La valutazione sarà quindi comprensiva dell'attenzione alle lezioni, dell'impegno nello svolgimento dei compiti assegnati per casa, della costanza nello studio disciplinare, la partecipazione durante i vari interventi didattici. le tipologie spazieranno dalla quelle a risposta aperta, alle online, alla costruzione di video, ppt o lezioni vere e proprie da riportare alla classe, permettendo così ad ogni alunno di capire e costruire la propria modalità di comprensione della materia e di esprimersi utilizzando tutte le caratteristiche personali.

Libri di testo

 Il materiale principale per lo studio domestico è dato dagli appunti presi in classe. A questo si aggiungono eventuali appunti, dispense, schemi, formulari forniti dall'insegnante (solitamente condivisi attraverso il registro elettronico) .